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We consider  the motion of the surface  separat ing two liquids in a nonstat ionary grav i ta -  
tional field or,  equivalently, under the action of a variable acceleration) (an overload) 
perpendicular  to the surface.  Conditions are  derived for the instability of the surface 
separat ing two liquids of finite depth in periodic,  constant, and impulsive force f ields;  
the physical  mechanism acting during the development of instability is studied, and 
some features  of the onset of instability are  investigated for the case in which the 
space is bounded. 

The behavior  of a nonviscous incompress ib le  liquid under the action of a constant accelerat ion per -  
pendicular to the f ree  surface was considered by Taylor  [ 1]. He showed that accelerat ion directed f rom 
the heavier  to the l ighter liquid has a stabilizing effect on dis turbances of the f ree  surface;  while acce le r -  
ation in the opposite direction tends to increase  instability and leads to unlimited increases  in small  dis-  
turbances .  This last  effect is called Taylor  instability. 

1. Let two nonviscous incompress ib le  liquids fill a horizontal  layer  bounded by two infinite parallel  
planes. Let the origin of a rec tangular  coordinate sys tem be on the surface  separat ing the liquids, with the 
axis in the direction of the interface and the y axis di rected ver t ical ly  upwards. The depth of the lower 
liquid is h i (the subscr ipt  1 always indicates quantities for  the lower liquid), the depth of the upper liquid 
h~. Motion is assumed to be two-dimensional  and a surface tension T acts at the liquid interface.  Let dis-  
turbances  of the interface surface ~(x, ~) be of the fo rm 

I] = -- a cos mx c~ (t) (1.1) 

where the amplitude a and the wave number  m are real  and positive, and a(t) is a function of the t ime to be 

determined.  

The boundary conditions for the problem are as follows: 

on the solid walls, and 

Ocpl 0(p~ 
~=_h = - - ~  ~=h~ = 0  

on v~o 
0-7 + ( v V )  ~l = 0 ,  v = - -  

on the interface surface.  

Here v is the velocity of the liquid and go is the velocity potent ia l .  The last  boundary condition can be 
simplified if it is assumed that ~] and V~ are small ,  since then the convection t e r m  in the equation of the 
surface may be neglected and we have 

0~ (k = t ,  2) 
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We now in t roduce  the  c o m p l e x  potent ia l s  

w~ (z) = % § ~ (~ = x + ~) 

We seek  t he se  po ten t ia l s  in the f o r m  

w~ --- cos m (z  ~ ih~) bl  ( t ) ,  w e = - -  cos m (z  - -  ihe) b e (t) 

The  l i n e a r i z e d  boundary  condi t ions  on the i n t e r f ace  a re  

a d~ b~ ( t )  = a d~ 
b~ (t) - -  r a s h  mhl  dt ' r a s h  mh~ dt  

and so the ve loc i ty  potent ia ls  a r e  

a d6 
(~  = ~ c o s  m x  ch  ra (g  g-  h~) ~t  

a cos mx c h m  (y h " d~ 
g)e m s h  rnh~ - -  ~) 

(1.2) 

It is  eas i ly  v e r i f i e d  that  t he se  e x p r e s s i o n s  sa t i s fy  the  L a p l a c e  equation V ~ k  = 0 and the bounda ry  
condi t ions .  

To find the  dynamic  condi t ion on the in t e r f ace ,  we c o n s i d e r  E u l e r ' s  equation,  wr i t t en  as  

0-5- § (v~V) v~ = ~ -- ~ Vp~ 

where  j is the  f ield of the  ex te rna l  f o r c e s .  Assuming  that  this  f ield is n o n s t a t i o n a r y  and c o n s e r v a t i v e ,  i~176 
that  it has  a potent ia l ,  we wr i te  

] = - - g ~ ( t )  = - - A g p ( t )  

where  g and II (g = V I I )  a r e  funct ions  of  the c o o r d i n a t e s  but not  of the t ime .  Rep re sen t a t i on  of the f ield in 
th is  way is equiva len t  to the a s sumpt ion  that  the r a t io  of  the f ie ld  s t r e n g t h s  at any two points  of  s p a c e  is in-  
dependent  of  the  t ime .  T he  funct ion ~(t)  d e s c r i b e s  the va r i a t ion  of  the f ield with t ime  at any point  of  s p a c e  ; 
in gene ra l  no r e s t r i c t i o n s  a re  i m pose d  on this  function,  a n d i t d e s c r i b e s  f ie lds  tha t  a r e  suddenly  applied,  tha t  
g radua l ly  weaken,  tha t  a r e  impu l s ive  o r  t i m e - p e r i o d i c ,  etc.  Since v k = - V ~ k  , Euler*s equat ions  imply  

~1=o 

Hence  the C a u c h y - L a g r a n g e  in teg ra l  is 

where  f ( t )  is an a r b i t r a r y  funct ion of the t ime .  

Since V~] is smal l ,  the Laplace*s  condi t ion fo r  the s u r f a c e  tens ion  T is 

0x ~ 

The  l a s t  two equat ions  supply the dynamic  condit ion on the i n t e r f ace :  

a [ t 
8-7 (thqD1 - -  Pete) - -  (Pl - -  92) g~ (t) -~ T (plV~lVq~ --  PeV~2V~2) 1 ~1~- T ~0~ = 0 (1.3) 

Now subs t i tu te  the e x p r e s s i o n s  fo r  (Pl, ~~ and ~ in ( i .1)  and (1o2) in (1.3). Using the  fac t  that  V and ~V 
a r e  s m a l l  and neg lec t ing  the t e r m  I/2 (PlV ~viV Ct -P2Vq2V~v2),  we obtain 

d~a 
d---- r + [(t - -  9) ~ ('~) + B-l] ~ = 0 

p~ (1.4) 
v~fm~ght, P=~, h=(cthrnh1~-pcthmh2) -~, B- gp~ 

rn~T 

Here 7 is the dimensionless time and B is the Bond number~ Solutions of (1.4) for specific functional 
relations between the external field and the time fi(7) yield the required functions 7(7) describing the varia- 
tion of the interface shape with time. 
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2o Equation (1.4) is a s e c o n d - o r d e r  l i nea r  d i f ferent ia l  equation with invar ian t  I(~-) = (1 - p) fl(T) + B -1. 

C o m p a r i s o n  t h e o r e m s  can be used to e s t ab l i sh  s e v e r a l  p r o p e r t i e s  of  so lu t ions  of th is  equation,  i.eo, 
to deduce  the p r o p e r t i e s  of  the  motion with t ime  of  the in t e r f ace  f r o m  p r o p e r t i e s  of the invar ian t  I('r). 

1. ff I(~) _< 0 e v e r y w h e r e  in the in te rva l  (%, ~'2), then all so lu t ions  of  the equation a r e  nonosc i l l a t o ry  
and have  no t  m o r e  than one z e r o  in this  in te rva l .  Th i s  is the  condit ion fo r  the cont inuous  en t r a inmen t  of  in-  
t e r f a c e  d i s p l a c e m e n t  dur ing  the  t ime  in te rva l .  I f  I(~) _< 0 for  all ~ and I(T) ~ 0 ,a l l  so lu t ions  except  the  t r i v -  
ial solut ion i n c r e a s e  unboundedly.  In this  sense ,  the condit ion I(v) _< 0 is suf f ic ient  fo r  the in t e r face  to be 
unstable .  

2. I f  

_7 (~) ~ 0 (I (~) =# const) 

in the c lo sed  in te rva l  [1-1, T2] , the  so lu t ions  of (1.4) a r e  o sc i l l a t o ry .  If  

s = inf I (~), S ---- sup _7 (x) 

in [ r l ,  T~], then the d i s t ance  between two s u c c e s s i v e  z e r o s  is s m a l l e r  than 7r/g~-but l a r g e r  than 7r/r 

3. I f  I(v) = c > 0  on an unbounded in t e rva l  T >~t,  e v e r y  solut ion has an infinite n u m b e r  of  z e r o s  (the 
i n t e r f a c e  c r o s s e s  its equ i l ib r ium posi t ion an infinite n u m b e r  of t imes ) .  

I f  I(T) is con t inuous ly  d i f fe ren t i ab le  and monoton ic ,  the  ampl i tude  o f  each  solut ion i n c r e a s e s  mono ton-  
ica l ly  when I(5,) d e c r e a s e s ,  and d e c r e a s e s  f o r  i n c r e a s i n g  I(1-). 

4. If  _7 (x) -+d~ ~ > 0 when ~, -~ ~o, so lut ions  of  (1.4) behave for  l a r g e  T l ike so lu t ions  of  

d~z , . ~ 0 

5, If  I (x) -+0  when x - ~  and, s t a r t i ng  with s o m e  value  of  % the condit ion 

holds, then a solution of (1.4) cannot have an infinite number of zeros (starting at some instant, the inter- 
face no longer passes through its equilibrium position). For comparison we use Euler~s equation 

-d-~+ ~ z =  0 

6. If  (1 - p ) B ( r  = O(x-k),. whe re  k > 1, then e v e r y  non t r iv i a l  solut ion y ( r )  # 0 can be  wri t ten  

= F (,) sin [B-~, + E (z)], y '  = B-~F (~) cos [B-Xz + E (x)] 
(B > 0) 

whe re  r(~-) and E(~-) a r e  d i f fe ren t i ab le  funct ions  and the p r i m e  ind ica tes  d i f fe ren t ia t ion  with r e s p e c t  to ~. 
With the  a p p r o p r i a t e  cho ice  of  E 0 and r 0 # 0, t h e s e  funct ions  a r e  

r ('c) = ro + 0 (x~'§ E (-c) = Eo + 0 (x -~+') 

7. If  ~(r) is cont inuous ly  d i f fe ren t iab le  fo r  r > ~'t and (1 - p) fl(r) = O(x -1) fl'(~-) -~ O (x -2) fo r  x --~ cr 
then sup  l im  lyB(r){for  x -+  ~ ,  whe re  YB is any solut ion of  (1.4) c o r r e s p o n d i n g  to a given va lue  o f  B, l ies  
be tween l im i t s  independent  of  B fo r  all B .  s a t i s fy ing  B _~ B ,  > 0. 

If  I ( r )  is  cont inuous ,  nega t ive ,  and pe r iod ic  with pe r iod  w > 0, then the gene ra l  solut ion of (1.4) has  J 

the f o r m  

Cl exp (al~) ~i (x) + c~ exp (a2~) a~ (T) 
In ~i ~ In p~ 

H e r e  C 1 and C 2 a r e  a r b i t r a r y  cons tan t s ,  Pt and P2 a r e  the r o o t s  o f  the  c h a r a c t e r i s t i c  equat ion,  and 
~i(~'), cr2(5-) a r e  funct ions  with pe r iod  w. 

If  I(~-) > 0 fo r  all pos i t ive  X such  tha t  

-~ jp(u)du~2 
0 
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then the general  solution is of the fo rm 

Cl(J 1 (T) + C2lY 2 (T) 
0r sin ~ q~ ~ (~) = cos ~- ~1 ( 0  - (~) 

Here C t and C 2 are  a rb i t r a ry  constants and ~I(T) and ~b2(T) are  functions with period co. Hence solu- 
tions are  unstable in this case .  

3. In the s imp les t case ,  in which fl0-)=eonst(independent of the time), Eqo (1.4), depending on the val-  
ue of B, can have three types of solution: 

z (~) = At cos (~ 1/(1 --  9) ~ + B-I) 7~ A~ sin (~ ] /( t  --  0) ~ -Y U-~) 

f o r  B-~ > (P - -  i) 
(~) = A1 q- A~ for B -1 -~ (p -- t) 

z (~) = At ch (~ ]/'[ (t -- p) ~ § B -~) I)-~ A~ sh (~ VI (1 - p) ~ 4- B -~ i) 

fo~ B - ~ < ( p - -  ~)~ 

The second type cor responds  to the cr i t ical  value B,  = [rio - 1)] -1, separa t ings table  and unstable in- 
te r face  states in constant gravitat ional  fields. 

The cr i t ica l  value 13, = [fl~o - 1)] +1 cor responds  to an unstable state.  

Such motion is real ized,  for example, during the transi t ion of a surface- tens ion f ree  sys tem (for ex- 
ample a sys tem consist ing of two gases)  into a weightless state. If there  are  waves on the interface in the 
state with gravitation,  then the rate  of growth of dis turbances  depends on the phase of the dis turbances at 
the onset  of weightlessness.  

If the interface is passing through an equilibrium state at this t ime,  then the ra te  of growth of d is tur-  
bances will be g rea tes t  if the deviation of the surface f rom the equil ibrium takes its l a rges t  value (the par -  
tiele velocity is zero), and at the onset of weight lessness  the interface " f reezes  ~ and the deviations f rom 
the equil ibrium position will not increase  with t ime. 

For  a liquid with sur face  tension, proper ty  4 of Sec. 2 shows that the onset of weight lessness  c o r r e -  
spends theoret ical ly  to s tates  of stable interface oscillation. 

However , th is  conclusion is of limited appl icabi l i ty ,s ince the t ransi t ion to weightlessness f rom a state 
of s t rong gravitation can cause the amplitude of waves on the interface to increase  so rapidly that the ini- 
t im fluid mass  breaks  up into separa te  volumes not connected with one another. Thus the t ransi t ion to 
weight lessness  of a liquid with surface  tension leads to stable oscil lat ing reg imes  of the f ree  surface  with 
amplitudes of the order  of the amplitude of gravitational waves,  unless the phase of surface oseil la-  
tions at the onset  of weightlessness cor responds  to a deviation of the free surface  f rom its equil ibrium 
position close to maximal.  Disintegration of the liquid may occur  in the absence of sur face  tension. 

A s imi la r  resul t  holds in the more  general  ease of sufficiently s trong dec reases  in the intensity of 
the gravitat ional  field. 

Under constant positive over loads,  the interface osci l lat ions are  standing waves whose frequencies  
increase  with increas ing external  field s trength (for constant wave number  m). 

Finally, the case  B -1 < (p - 1) fl cor responds  to Taylor  instability if the negative overload sat isf ies  
the condition 

_ j >  ,~___~r, j < 0  
pl -- pe 

Here interface dis turbances increase  unboundedly at a ra te  determined by the value of B. The con- 
dition 

~ V R i -  0 ) ~ + B - 1 { = O  
dm 
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determines  the equation for the wave number  m corresponding to the most  rapid rate  of increase  of dis-  
turbanees :  

(h0 + m0H0) -1 (3h0 d- moHo) = - -  B 

H0 ----- hi csch2m0hi + ph 2 csch2m0h~ 

where h 0 is the value of h for m = m0~ 

For  h 1 -* ~ ,  h 2 -* ~ ,  the maximum instability occurs  for 

(p - l )  ~ B  = - -  3,  or ,~0 = r % ( - -  1) (PI - -  p~)'Z T 

If the upper fluid is a gas p - .  0. In this case ,  when the depth of the lower fluid decreases  (h i -~ 0) 
the value of B corresponding to maximal instability inc reases  until (1 - p )  fiB = - 2 ,  or  m 0 ~ ~fl/2 ( - J )  Pl /T 
i.e., the increase  in m 0 is ~ - 2  t imes  its increase  for  a deep fluid. Hence with decreas ing fluid depth the 
wavelength of the nmost dangerous"  waves, corresponding to the fastest  ra te  of growth of dis turbances,  
dec reases .  

4. We note that, in all the cases  considered,  the interface is a vor tex  surface,  although the motion of 
each of the fluids separately  is i r rotat ional .  This can be demonst ra ted  by using the proper t ies  of acyclic  
motion. In the case  of standing waves, for  example, the difference between the horizontal  velocity compo-  
nents in the two fluids at the interface is 

092 = no) sin mx (cth mhi + cth mh~) cos cot 0x ly=n 

and the upper and lower fluids move along the interface in opposite direct ions.  

The maximum velocity difference is at nodes of standing waves; at antinodes the flow is i r rotat ional .  

It follows that, for  any wave motion of the interface and la rge  wave numbers  m, Helmholz instability 
can occur  at nodes of standing waves corresponding to small  m~ this instability ar is ing sooner on a shallow 
liquid than on a deep liquid. This conclusion is conf i rmed by experimental  studies of the development of 
Taylor  instability in gases  [2]. 

5. Tay lo r  instability has the following simple interpretat ion.  Suppose that the interface is wave- 
shaped and that, at a certain t ime, both fluids are  motionless and the gravitational force  is directed down- 
wards.  Then the p r e s s u r e  is constant  in any horizontal  plane above the interface in the upper fluid. How- 
ever ,  in a horizontal  plane below the interface the p r e s s u r e  var ies  periodically along the x axis. If the low- 
er  fluid is the heavier ,  then the p r e s s u r e  below wave c re s t s  is g r ea t e r  than below troughs.  This p r e s su re  
distribution will genera te  a flow in the lower fluid f rom c re s t s  to t roughs,  leading to a dec rease  m the de- 
viation of the interface f rom its equilibrium position. In the opposite situation the flows a re  in the opposite 
direction,  and the lower fluid begins to penetrate  the upper fluid, flowing f rom below troughs to positions 
below c res t s .  

6. In the case  of th ree-d imens iona l  dis turbances  of an interface between fluids in a bounded space,  
the velocity potential must  sat isfy Laplace~s equation V2q~k = 0 with the same  boundary conditions used 
above, and also the supplementary condition (Vq~)n = 0 on the la teral  walls, where n is the normal  to the 
surface .  This extra  condition imposes l imitations on the waves numbers  m, which here  can only take a 
d i scre te  set  of values corresponding to the eigenvalues of the problem. Fo r  example, in a c i r cu la r  cyl inder  
of radius R and height h 1 + h2, the position of the interface can be descr ibed by 

~l = - -  aJn,,(mr) cos nO ~ (t) (6.1) 

where Jn(mr)  is the n- th  o rde r  Bessel  function. 

Here the velocity potentials are 

G 
f~l ~- ~ ]n (mr) cos nO chm (y -k hi) ~t 

d~ 
2 J (mr) cos nO ch ra (y --  h~) -~ T~== rashmh~ n 

The values of m are  the roots  of the equation 

t (dJ~ for n=0)  dJn dr (mr) r=R ~ 0 ~ dr 
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Hence  m = ~ m f R ,  w h e r e  ~ ln  t a k e s  v a l u e s  f r o m  the  s e q u e n c e  3.832, 7.016, 10.173 . . . .  

F o r  a c i r c u l a r  c y l i n d e r  the  m i n i m u m  wave  n u m b e r  m ,  o c c u r s  fo r  n = 1, when m ,  = 1 . 8 4 t R .  

Hence  an i n t e r f a c e  in a v e r t i c a l ,  e i r c u l a r c y l i n d r i c a l  t ank  b e c o m e s  u n s t a b l e  if  

For axially symmetric disturbances (n = 0), the admissible critical overload is greater by a factor 
(3o832/1o84) 2 ~ 4.35, and so in weak gravitational fields (B ~ [(p - 1)fl]-i)the loss of stability of the fluid 
surface is asymmetric with respect to the tank walls: On one side of the nodal diameter (0 = • 1/27r) only 
the lower fluid moves (upwards), and on the other side only the upper fluid moves (downwards), i.e., the 
liquid tilts about the diameter 0 = ~: i/27ro 

In moderately strong fields, the wave number m 0 corresponding to maximal instability is determined 
by Eq. 1 of Seco 2, and it may correspond to axially symmetric disturbances (the lower fluid penetrates the 
upper fluid on the tank axis, forcing the upper fluid downwards along the tank wall), and also to complex 
oscillation modes generating multiple ntonguesn of one liquid penetrating the other. 

The foregoing analysis is valid for a boundary-wetting angle 1/27r ; otherwise the undisturbed interface 
between the liquids in the tank is in general not plane. This reservation, however, is only essential for 
capillaries and, in general, for small values of B, when the interface may differ greatly from a plane for 
boundary-wetting angles differing considerably from I/2Tr. In moderately strong fields (B >> i), the undis- 
turbed surface is nonplanar only close to the wall, the disturbance is small, and the results of the above 
analysis are not greatly altered even when the boundary angle is close to zero or to 7r. 

7o We consider briefly one form of interface instability in variable force fields, namely the instabil- 
ity (which can be called parametric resonance)occurring in an oscillating force field~ 

If the gravitational field oscillates with time, the function fl(~-) in (1.4) is time-periodic. Equation 
(1o4) reduces to Hill~s equation, and in the special case in which the overloading is a sinusoidal function of 
the time it reduces to a Mathieu equation [3, 4]. If the period of the overload is equal to or is a multiple 
of 7r{ [(i -p)fi  + B -I] mgh'}-l/2, then parametric resonance arises and the interface disturbances increase 
unboundedly (if there is no damping) for arbitrarily small overload-amplitude oscillations. With increasing 
overload~ amplitude oscillations, the range of unstable interface states widens in frequency, leading to in- 
stability not only for the frequencies indicated, but also for slightly different frequencies. 

In the case of a sinusoidal force field, the range of instability for any oscillation amplitude can be 
determined by using Strett~s diagram, for piecewise-constant overload by means of Meisner's method, 
and for other periodic oscillations by solving Eqo (1.4) numerically. 

For instability the gravitational field acts on the interface as follows: The field becomes stronger 
when the interface is moving from a displaced position towards its equilibrium position, and becomes 
weaker when the interface is moving from its equilibrium position towards its maximum displacement. In 
this situation the field performs work on the system and increases the energy of the oscillations~ Para- 
metric resonance of the free surface of a liquid was observed by Faraday. 

8. We conclude by considering impulsive fields. Suppose that an impulsive field engendered by a 
shock wave acts on the interface between two gases~ In this case 

(t) ----- U8  ( t - -  tl) 

w h e r e  U is  the  m a s s  v e l o c i t y  at  t he  i n t e r f a c e  c a u s e d  by the  p a s s a g e  of a shock  wave  and 5(t - t l )  i s  Di rac~s  
func t ion .  I n t e g r a t i o n  of th i s  equa t ion  y i e l d s  

F do f ( t ) :% + L- ~}~=o --mh(t--p) Ua(tl)]t' a0=a( t ) [ t=0  

o r ,  i f  t he  i n t e r f a c e  i s  a t  r e s t  when the  shock  wave  a r r i v e s ,  

I pi -- 92 ) ~ ( t )  = % i--ra~Ut (8~ 
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In (8.1) we have assumed that both gases  extend to infinity. Hence the in ter face  is unstable both if 
the shock wave is incident f rom the side of the l ighter  gas or f rom the side of the heavier  gas ; when the 
motion is f r om the side of the  heavier  gas (p~ > P2), the in ter face  f i r s t  moves to inc rease  the sign of the 
d is turbances  (convexities become concavit ies  and conversely) ,  and then the deviations inc rease  l inear ly  
with t ime.  The ra te  of development  of instabili ty is f as te r  when the di f ference between the gas densi t ies  is 
l a rge r ,  when the amplitude of the initial in ter face  dis turbance is l a rge r ,  and when the shock wave is s t rong-  
er ,  while the ra te  of development  is s lower  when the wavelength X = 2v/m is longer.  H. Richtmyer  [5] has 
at tempted to solve this problem numer ica l ly  f rom the point of view of Tay lo r  instabili ty,  and exper imental  
work has been done by E. E. Meshkov [6]. 

Equation (8.1) can be written 

~(0 _-- I - - 2 ~  P ~ - ~  z 
z (0)' p1 + p~ X 

Hence, all the s t ra ight  l ines in Fig. 5 in E~ E~ Meshkovls work ci ted above must  emanate  f rom a point with 
ordinate  1o 

E. E. Meshkov's  work conf i rms our  conclusions.  Hence, the behavior  of the in ter face  between two 
gases  on the incidence of a shock wave is not de te rmined  by Tay lo r  instabili ty,  but by a specif ic  instabil-  
ity, analogous to that cons idered  above, caused by the onset  of weightlessness~ 

1o 
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