MOTION OF THE SURFACE SEPARATING TWO LIQUIDS
OF FINITE DEPTH UNDER THE INFLUENCE
OF VARIABLE FORCE FIELDS

V. S. Sizonov

We consider the motion of the surface separating two liquids in a nonstationary gravita-
tional field or, equivalently, under the action of a variable acceleration (an overload)
perpendicular to the surface. Conditions are derived for the instability of the surface
separating two liquids of finite depth in periodic, constant, and impulsive force fields;
the physical mechanism acting during the development of instability is studied, and
some features of the onset of instability are investigated for the case in which the
space is bounded.

The behavior of a nonviscous incompressible liquid under the action of a constant acceleration per-
pendicular to the free surface was considered by Taylor [1]. He showed that acceleration directed from
the heavier to the lighter liquid has a stabilizing effect on disturbances of the free surface; while acceler-
ation in the opposite direction tends to increase instability and leads to unlimited increases in small dis-
turbances, This last effect is called Taylor instability.

1. Let two nonviscous incompressible liquids fill a horizontal layer bounded by two infinite parallel
planes. Let the origin of a rectangular coordinate system be on the surface separating the liquids, with the
axis in the direction of the interface and the y axis directed vertically upwards. The depth of the lower
liquid is h; (the subscript 1 always indicates quantities for the lower liquid), the depth of the upper liquid
h,. Motion is assumed to be two-dimensional and a surface tension T acts at the liquid interface. Let dis-
turbances of the interface surface 7(x, t) be of the form

= — g cos mx o (8) (1.1)

where the amplitude @ and the wave number m are real and positive, and o(t) is a function of the time to be
determined.

The boundary conditions for the problem are as follows:

_n = _ %% =
Y ly=—t O ly=h,
on the solid walls, and
g—?T’-(vV)ﬂ:Ov v=—Y9p

on the interface surface.

Here v is the velocity of the liquid and ¢ is the velocity potential.. The last boundary condition can be
simplified if it is assumed that n and ¥71 are small, since then the convection term in the equation of the
surface may be neglected and we have
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We now introduce the complex potentials
wy (2) = @y -} Iy (z =z +iy)
We seek these potentials in the form
wy = cosm (z +-ihy) by (8), w, = — cosm (z — ih,) b, ()

The linearized boundary conditions on the interface are

a ds
msh mhy dt

a do

b)) = magmma ®=

and so the velocity potentials are

ds

cosmrchm(y -+ hl)"d't

a
0= e (1.2)
_ a h h)dc °
92 = — R, COSME C m(y — a0

It is easily verified that these expressions satisfy the Laplace equation Vzgok = 0 and the boundary
conditions,
To find the dynamic condition on the interface, we consider Euler'sequation, written as
avk

. 1
5 T 0xV) vx = 1-‘?Vpk

where j is the field of the external forces. Assuming that this field is nonstationary and conservative, i.e.,
that it has a potential, we write

j=—gh(®)=— Alp (9

where g and II (g =V II) are functions of the coordinates but not of the time. Representation of the field in
this way is equivalent to the assumption that the ratio of the field strengths at any two points of space is in-
dependent of the time. The function 5(t) describes the variation of the field with time at any point of space;
in general no restrictions are imposed on this function, andit describes fields that are suddenly applied, that
gradually weaken, that are impulsive or time-periodic, ete. Since Vg ==V ¢, Euler's equations imply

1 3
V(L VgV IR () — 2] —0
Hence the Cauchy--Lagrange integral is
4 09y
Pi + 5 0V VO, + 0 TIB (£) — Pr; =1 ()
where f(t) is an arbitrary function of the time,

Since V1 is small, the Laplace’s condition for the surface tension T is

2,
pl-—p2=_Téﬂ

oz?

The last two equations supply the dynamic condition on the interface:

8 . 32
3¢ (P1P1— Patp) — [(91 —P2)gB () + %(plwlvwl — sz%V%ﬂ 0 +T5=0 (1.3)

Now substitute the expressions for ¢;, ¢, and 1 in (1.1) and (1.2) in (1.3). Using the fact that 1 and ¥V
are small and neglecting the term '3 (0,V 9,V ¢; — 0, V9,V 9,), we obtain

S+ (L —p)B() + B o=0
(1.4)

T=Vmght, o=B. h=(cthmh, +pothmhy)?, B= £

mtT

Here 7 is the dimensionless time and B is the Bond number. Solutions of (1.4) for specific functional
relations between the external field and the time B(7) yield the required functions %(r) describing the varia-
tion of the interface shape with time.
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2. Equation (1.4) is a second-order linear differential equation with invariant I(7) = (1 — p) Blr) + B1,

Comparison theorems can be used to establish several properties of solutions of this equation, i.e.,
to deduce the properties of the motjon with time of the interface from properties of the invariant I(t).

1. I I{r) = 0 everywhere in the interval (r,, 7,), then all solutions of the equation are nonoscillatory
and have not more than one zero in this inferval. This is the condition for the continuous entrainment of in-
terface displacement during the time interval, If I{7) = 0 for all 7 and I(r) = 0, all solutions except the triv-
ial solution increase unboundedly. In this sense, the condition I(v) =< 0 ig sufficient for the interface to be
unstable,

2. If
I(M>0 (@) const)
in the closed interval [Ty, T3}, the solutions of (1.4) are oscillatory. If
s = inf I (1), S = sup I (v)
in [74,T,], then the distance between two successive zeros is smaller than 7/Vs but larger than 7/VS.

3. If I(r) = ¢>0 on an unbounded interval T >7;, every solution has an infinite number of zeros (the
interface crosses its equilibrium position an infinite number of times),

If I(1) is continuously differentiable and monotonic, the amplitude of each solution increases monoton-
ically when I(r) decreases, and decreases for increasing I(7),

4, If I(x) —>d?>0 when 1 - «, solutions of (1.4) behave for large T like solutions of

dis PO
Efg-g-dlts._o

5., If I (1) -0 when v - e and, starting with some value of 7, the condition
0T (D)<Y,

holds, then a solution of (1.4) cannot have an infinite number of zeros (starting at some instant, the inter-
face no longer passes through its equilibrium position), For comparison we use Euler's equation

d% k2
wtEo=0

6, If (1—p)p(r) = O(x‘k),- where k > 1, then every nontrivial solution y(7) # 0 can be written
y=T{()sin [Br +E(v)], ¥y = B (v} cos [Br +E ()]
(B>0)
where T'(t) and E(7) are differentiable functions and the prime indicates differentiation with respect to 7,
With the appropriate choice of E; and I'; = 0, these functions are

T(r) =Ty +0 (&), E(1) = Ey +0 (z°F)
7. If f(r) is continuously differentiable for 7 > 7( and (1= p) f(r) = O&™) p'(r) = O (x"?) for z — w,

then sup lim |yg(r)|for z — co, where yp is any solution of (1.4) corresponding to a given value of B, lies
hetween limits independent of B for all Bx satisfying B=Bx > 0.

8. If I(r) is continuous, negative, and periodic with period w > 0, then the general solution of (1,4) has
the form
1 eXp (oyT) 01 (T) ¢, 8XD {0a7) G ()

oy == ln_mpl>0,, %:EEE/\/O, p1>1~, 0<p2<1‘

(]

Here C, and C, are arbitrary constants, p; and p, are the roots of the characteristic equation, and
oy{r), 0,(r) are functions with period w.

If I(r) > 0 for all positive A such that
0<‘3§:Sp(u)cm<2

0
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then the general solution is of the form
€10, (1) + ;05 (7)

61 (1) = cos %‘ Py (1) — Sin%r Pe (1)
5o (T) = cos?n—17 P, (T) - sin %’E Py (1)

Here C; and C, are arbitrary constants and $;(1) and $,(r) are functions with period w. Hence solu-
tions are unstable in this case.

3. In the simplestcase, in which 8(T)=const(independent of the time), Eq. (1.4), depending on the val-
ue of B, can have three types of solution:

5(0) = Aycos( YV T—p) B+ B Y + Aysin(v VT —p) B+ B Y
for  B1>(p—1)B
5(1) = Ay + Ayt for Bl (p—1)B

5(1) = Ach (V[T —p) B+ BN )4 Aash (e V[(T—0)B+ B
for B1<(p—1)B

The second type corresponds to the critical value Bx = [8{p — 1)]~!, separatingstable and unstable in-
terface states in constant gravitational fields.

The critical value Bx = [8{o — 1)] "1 corresponds to an unstable state,

Such motion is realized, for example, during the transition of a surface-tension free system (for ex-
ample a system consisting of two gases) into a weightless state. If there are waves on the interface in the
state with gravitation, then the rate of growth of disturbances depends on the phase of the disturbances at
the onset of weightlessness.

If the interface is passing through an equilibrium state at this time, then the rate of growth of distur-
bances will be greatest if the deviation of the surface from the equilibrium takes its largest value (the par-
ticle velocity is zero), and at the onset of weightlessness the interface "freezes?® and the deviations from
the equilibrium position will not increase with time,

For a liquid with surface tension, property 4 of Sec. 2 shows that the onset of weightlessness corre-
sponds theoretically to states of stable interface oscillation.

However, this conclusion is of limited applicability, since the transition to weightlessness from a state
of strong gravitation can cause the amplitude of waves on the interface to increase so rapidly that the ini~
tial fluid mass breaks up into separate volumes not connected with one another, Thus the transition to
weightlessness of a liquid with surface tension leads to stable oscillating regimes of the free surface with
amplitudes of the order of the amplitude of gravitational waves, unless the phase of surface oscilla-
tions at the onset of weightlessness corresponds to a deviation of the free surface from its equilibrium
position close to maximal. Disintegration of the liquid may occur in the absence of surface tension,

A similar result holds in the more general case of sufficiently strong decreases in the intensity of
the gravitational field.

Under constant positive overloads, the interface oscillations are standing waves whose frequencies
increase with increasing external field strength (for constant wave number m),

Finally, the case B™! < (o — 1) 8 corresponds to Taylor instability if the negative overload satisfies
the condition

. m2T .
—]>Pl"—'92’ ]<O

Here interface disturbances increase unboundedly at a rate determined by the value of B, The con-
dition

VA=) 8+ B =0
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determines the equation for the wave number m corresponding to the most rapid rate of increase of dis~
turbances:

(ho +-moHo)™ (Bhy +meHy) = — B

Hy = hy csch®mohy -+ ph, cschimgh,

where hy is the value of h for m =m,,
For hy ~+ e, hy — @, the maximum instability occurs for
(p—NBB=—3, oo m=V Ys(—DNl1—p)]T

If the upper fluid is a gas p — 0. In this case, when the depth of the lower fluid decreases (h; — 0)
the value of B corresponding to maximal instability increases until (1 —p) 8B =—2, or my — v/, Z—Ji plZ’i‘
i.e., the increase in m, is V¥, times its increase for a deep fluid. Hence with decreasing fluid depth the
wavelength of the "most dangerous® waves, corresponding to the fastest rate of growth of disturbances,
decreases,

4. We note that, in all the cases considered, the interface is a vortex surface, although the motion of
each of the fluids separately is irrotational, This can be demonstrated by using the properties of acyclic
motion. In the case of standing waves, for example, the difference between the horizontal velocity compo-
nents in the two fluids at the interface is

_
azx

o
Ysasny oz

., = dosinmz (cth mhy - cthmbh,) cos wt

and the upper and lower fluids move along the interface in opposite directions.
The maximum velocity difference is at nodes of standing waves; at antinodes the flow is irrotational,

It follows that, for any wave motion of the interface and large wave numbers m, Helmholz instability
can oceur at nodes of standing waves corresponding to small m, this instability arising sooner on a shallow
liquid than on a deep liquid. This conclusion is confirmed by experimental studies of the development of
Taylor instability in gases [2]. ’

5. Taylor instability has the following simple interpretation. Suppose that the interface is wave-
shaped and that, at a certain time, both fluids are motionless and the gravitational force is directed down-
wards, Then the pressure is constant in any horizontal plane above the interface in the upper fluid. How-
ever, ina horizontal plane below the interface the pressure varies periodically along the x axis, If the low-
er fluid is the heavier, then the pressure below wave crests is greater than below troughs. This pressure
distribution will generate a flow in the lower fluid from crests to troughs, leading to a decrease in the de-
viation of the interface from its equilibrium position. In the opposite situation the flows are in the opposite
direction, and the lower fiuid begins to penetrate the upper fluid, flowing from below troughs to positions
below crests.

6. In the case of three-dimensional disturbances of an interface between fluids in a bounded space,
the velocity potential must satisfy Laplace’s equation V2@, = 0 with the same boundary conditions used
above, and also the supplementary condition (v gok)n = 0 on the lateral walls, where n is the normal to the
surface. This extra condition imposes limitations on the waves numbers m, which here can only take a
discrete set of values corresponding to the eigenvalues of the problem. Forexample,in a circular cylinder
of radius R and height h; + h,, the position of the interface can be described by

1 == — aJydmr) cos nd o (¥ (6.1)
where J, (mr) is the n-th order Bessel function.
Here the velocity potentials are

Py = mshmfz I (mr) cosnechm(y+kl) dr

Py =— ml (mr)cosnechm(y-—h)dt

The values of m are the roots of the equation

M = {) (ﬂ%}_@ﬂz—m}l(mr) fé!‘_n:())

dr

r=R
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Hence m = ozm/R, where oy, takes values from the sequence 3.832, 7.016, 10,173... .
For a circular cylinder the minimum wave number ms« occurs for n =1, when mx =1,84/R.

Hence an interface in avertical, circularcylindrical tank becomes unstable if
1.84 T
- > ( ) P1— Q2

For axially symmetric disturbances (n = 0), the admissible critical overload is greater by a factor
(3.832/1.84) ~ 4.35, and so in weak gravitational fields (B ~ [(p — 1) 8] !)the loss of stability of the fluid
surface is asymmetric with respect to the tank walls: On one side of the nodal diameter (8 =+ /) only
the lower fluid moves (upwards), and on the other side only the upper fluid moves (downwards), i.e,, the
liquid tilts about the diameter 0 ==1!/m,

In moderately strong fields, the wave number m; corresponding to maximal instability is determined
by Eq. 1 of Sec. 2, and it may correspond to axially symmetric disturbances (the lower fluid penetrates the
upper fluid on the tank axis, forcing the upper fluid downwards along the tank wall), and also to complex
oscillation modes generating multiple "ongues® of one liquid penetrating the other.

The foregoing analysis is valid for a boundary-wetting angle Y4m; otherwise the undisturbed interface
between the liquids in the tank is in general not plane. This reservation, however, is only essential for
capillaries and, in general, for small values of B, when the interface may differ greatly from a plane for
boundary-wetting angles differing considerably from Y/yr. In moderately strong fields (B > 1), the undis-
turbed surface is nonplanar only close to the wall, the disturbance is small, and the results of the above
analysis are not greatly altered even when the boundary angle is close to zero or to 7,

7. We consider briefly one form of interface instability in variable force fields, namely the instabil-
ity (which can be called parametric resonance)occurring in an oscillating force field.

If the gravitational field oscillates with time, the function B(r) in (1.4) is time-periodic. Equation
(1.4) reduces to Hill's equation, and in the special case in which the overloading is a sinusoidal function of
the time it reduces to a Math1eu equation [3, 4]. If the period of the overload is equal to or is a multiple
of M{[(L —p)B + B“‘]mgh}“1 2, then parametric resonance arises and the interface disturbances increase
wboundedly (if there is no dampmg) for arbitrarily small overload-amplitude oscillations., With increasing
overload- amplitude oscillations, the range of unstable interface states widens in frequency, leading to in-
stability not only for the frequencies indicated, but also for slightly different frequencies,

In the case of a sinusoidal force field, the range of instability for any oscillation amplitude can be
determined by using Strett's diagram, for piecewise-constant overload by means of Meisner!s method,
and for other periodic oscillations by solving Eq. (1.4) numerically,

For instability the gravitational field acts on the interface as follows: The field becomes stronger
when the interface is moving from a displaced position towards its equilibrium position, and becomes
weaker when the interface is moving from its equilibrium position towards its maximum displacement. In
this situation the field performs work on the system and increases the energy of the oscillations. Para-
metric resonance of the free surface of a liquid was observed by Faraday.

8. We conclude by considering impulsive fields. Suppose that an impulsive field engendered by a
shock wave acts on the interface between two gases. In this case

B() = %o (t— 1)

where Uis the mass velocity at the interface caused by the passage of a shock wave and 6(t — t,) is Dirac’s
function. Integration of this equation yields

c(t):cﬁ—["g .

—mh (1 "_p) Us (fl)]tf Gy = G(t) it:o
or, if the interface is at rest when the shock wave arrives,

o(t):co<1~mp+§ZU) (8.1)

761



In (8.1) we have assumed that both gases extend to infinity. Hence the interface is unstable both if
the shock wave is incident from the side of the lighter gas or from the side of the heavier gas; when the
motion is from the side of the heavier gas (p; > p,), the interface first moves to increase the sign of the
disturbances (convexities become concavities and conversely), and then the deviations increase linearly
with time. The rate of development of instability is faster when the difference between the gas densities is
larger, when the amplitude of the initial interface disturbance is larger, and when the shock wave i8 strong-
er, while the rate of development is slower when the wavelength A = 27 /m is longer. R. Richtmyer [5] has
attempted to solve this problem numerically from the point of view of Taylor instability, and experimental
work has been done by E. E, Meshkov {6].

Equation (8.1) can be written

S0y gz
0= T TR

Hence, all the straight lines in Fig, 5 in E, E. Meshkov's work cited above must emanate from a point with
ordinate 1,

E. E. Meshkov's work confirms our conclusions, Hence, the behavior of the interface between two
gases on the incidence of a shock wave is not determined by Taylor instability, but by a specific instabil-
ity, analogous to that considered above, caused by the onset of weightlessness.
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